RICOH

R1801K Series

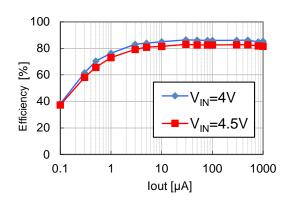
Buck DC/DC Converter for Energy Harvester with Adjustable Maximum Power Point Control, Adjustable Output Voltage and PG Function

No. EA-422-200722

OVERVIEW

R1801K is a power-storing buck DC/DC converter for a photovoltaic and vibration energy harvester. The Power Good (PG) function can output PG signal according to the output voltage facilitating to build a system. A low operating quiescent current allows a harvester to be used under a low-illumination environment, and it is suitable for an equipment with low power supplied from a harvester.

KEY BENEFITS


- Providing a low power supply (I_Q 200 nA) and a high efficiency (approximately 80%@10 μA).
- Monitoring the output voltage to output Power Good (PG) signal.
- · Adjustable output voltage and maximum power point control voltage by pin setting.

KEY SPECIFICATIONS

- Input Voltage Range: 2.3 V to 5.5 V
- Output Voltage Range: 2.3 V to 4.5 V
- Maximum Power Point Control Voltage Range :2.7 V to 5.3 V
- Output Voltage Accuracy: ± 3.0%
- Operating Quiescent Current:
 Typ. 200 nA (Ta =25°C, at no load)
 under condition of V_{IN} = 4 V, V_{OUT} = 3.0 V
- Starting Power: 1 μ W ($V_{IN} = 4 \text{ V}, V_{OUT} = 3.0 \text{ V}$)
- Reverse Current Protection (V_{IN} ≥ 2.0 V)
- Adjustable Maximum Power Point Control, Adjustable Output Voltage
- PG Function

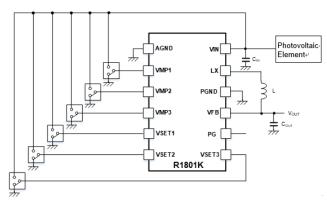
TYPICAL CHARACTERISTICS

Efficiency vs. Output Current Vout = 3.0 V

APPLICATIONS

Energy harvesting module of a photovoltaic and vibration energy harvester

PACKAGE



SELECTION GUIDE

Product Name	Package	Quantity per Reel
R1801KxxxA-TR	DFN(PLP)2730-12	5,000 pcs

xxx: Select the ideal combination of the set output voltage (V_{SET}) and the set maximum power point control voltage (V_{MPSET}) from the code number starting from 001.

TYPICAL APPLICATION

 $L = 22 \mu H$, $C_{IN} = 10 \mu F$, $C_{OUT} = 47 \mu F$

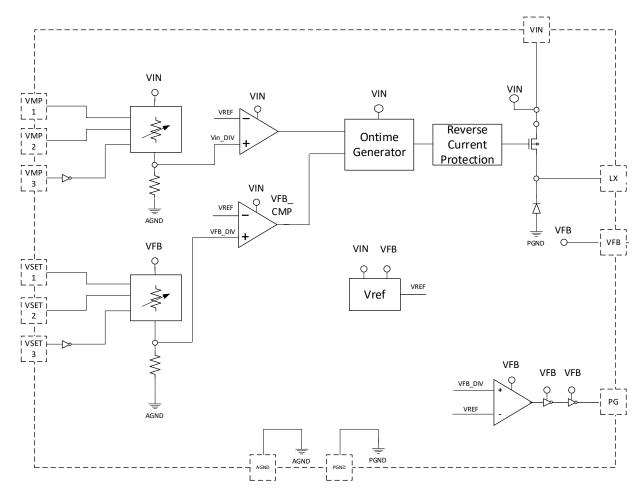
No. EA-422-200722

SELECTION GUIDE

The set output voltage and the set maximum power point control voltage are user-selectable options.

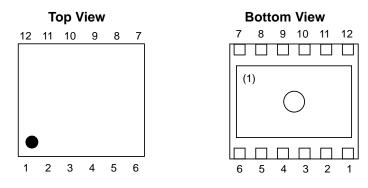
Selection Guide

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R1801KxxxA-TR	DFN(PLP)2730-12	5,000 pcs	Yes	Yes


xxx: Select the ideal combination of the set output voltage (V_{SET}) and the set maximum power point control voltage (V_{MPSET}) from the code number starting from 001.

Refer to PRODUCT-SPECIFIC ELECTRICAL CHARACTERISTICS for lineup.

When use the PG function, put the V_{SET} voltage 2.5 V or higher.


It is recommended to set as $V_{MP} > V_{SET} + 0.5 \text{ V}$ or higher.

BLOCK DIAGRAM

R1801K Block Diagram

PIN DESCRIPTION

DFN (PLP) 2730-12 Pin Configuration

It is recommended that the tab be connected to the ground plane on the board, or otherwise be left floating.

DFN(PLP)2730-12 Pin Description

Pin No.	Symbol	Description
1	AGND	Analog Ground Pin
2	VMP1	Maximum Power Point Control Voltage Adjustment Pin 1
3	VMP2	Maximum Power Point Control Voltage Adjustment Pin 2
4	VMP3	Maximum Power Point Control Voltage Adjustment Pin 3
5	VSET1	Output Voltage Adjustment Pin 1
6	VSET2	Output Voltage Adjustment Pin 2
7	VSET3	Output Voltage Adjustment Pin 3
8	PG	Power Good Pin
9	VFB	Output Voltage Pin
10	PGND	Power Ground Pin
11	LX	DC/DC Switching Pin
12	VIN	Pin for Connecting Photovoltaic Element

⁽¹⁾ The tab on the bottom of the package enhances thermal performance and is electrically connected to GND (substrate level).

No. EA-422-200722

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit
V _{IN}	VIN Pin Voltage	-0.3 to 6.5	V
V _{LX}	LX Pin Voltage	-0.3 to V _{IN} + 0.3	V
V _{VFB}	VFB Pin Voltage	-0.3 to 6.5	V
V _{VMP1}	VMP1 Pin Voltage	-0.3 to 6.5	V
V_{VMP2}	VMP2 Pin Voltage	-0.3 to 6.5	V
V _{VMP3}	VMP3 Pin Voltage	-0.3 to 6.5	V
V _{VSET1}	VSET1 Pin Voltage	-0.3 to 6.5	V
V _{VSET2}	VSET2 Pin Voltage	-0.3 to 6.5	V
V _{VSET3}	VSET3 Pin Voltage	-0.3 to 6.5	V
V_{PG}	Power Good Pin	-0.3 to 6.5	V
P _D	Power Dissipation	Refer to Appendix "POWER DISSIF	ATION"
Tj	Junction Temperature Range	-40 to 85	°C
Tstg	Storage Temperature Range	-55 to 125	°C

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause permanent damage and may degrade the lifetime and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

RECOMMENDED OPERATING CONDITIONS

Recommended Operating Conditions

Symbol	Parameter	Rating	Unit
V_{IN}	Input Voltage	2.3 to 5.5	V
Та	Operating Temperature Range	-40 to 85	°C

RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

ELECTRICAL CHARACTERISTICS

The specifications surrounded by _____ are guaranteed by design engineering at -40°C \leq Ta \leq 85°C.

R1801K Electrical Characteristics

 $(Ta = 25^{\circ}C)$

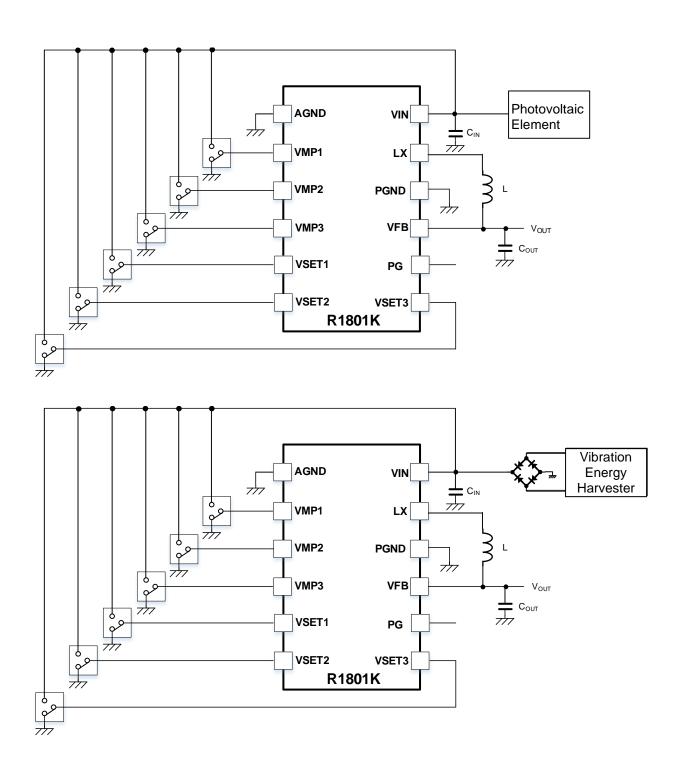
		1			(/
Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Vоит	Output Voltage	$V_{IN} \ge V_{SET} + 0.5 \text{ V},$ $V_{VSET1-3} = \text{"L"}, \text{ at no load}$	V _{SET} x0.97		V _{SET} x1.03	V
ΙQ	Operating Quiescent Current	V _{IN} = 5.0 V, V _{VFB} = 3.0 V, device not switching VFB pin current is converted by V _{IN} current		200	420	nA
V _{MP}	Accuracy of Maximum Power Point Control Voltage	V _{VFB} = 0 V	-200		200	mV
VMP1 to 3	VMP1 to 3 Pin H/L Leakage Current	$V_{IN} = 5.5V$, $V_{VMP1 to 3} = 5.5 V / 0 V$			0.1	uA
VSET1 to 3	VSET1 to 3 Pin H/L Leakage Current	$V_{IN} = 5.5 \text{ V}, V_{VSET1 \text{ to } 3} = 5.5 \text{ V} / 0 \text{ V}$			0.1	uA
ILEAK	Output Driver H/L Leakage Current	V _{IN} = 5.5 V, V _{LX} = 5.5 V / 0 V			0.1	uA
Д VмР	VMP Adjustment Resolution			100		mV
△VSET	VSET Adjustment Resolution			100		mV

All test items listed under Electrical Characteristics are done under the pulse load condition ($Tj \approx Ta = 25$ °C). Test circuit is operated with "Open Loop Control" (GND = 0 V), unless otherwise specified.

R	1	8	n	1	K
	•	L	.,		г,

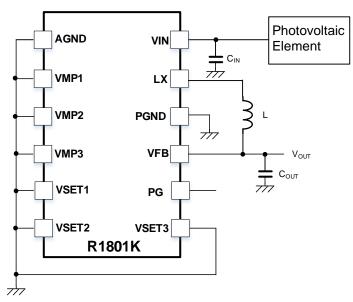
PRODUCT-SPECIFIC ELECTRICAL CHARACTERISTICS

The specifications surrounded by are guaranteed by design engineering at -40° C \leq Ta \leq 85°C.


Product Name	V _{SET}	(V _{SET1~3} ="L")	[V]	V _{MP}	(V _{MP1~3} ="L")	[V]
1 Todact Name	Min.	Тур.	Max.	Min.	Тур.	Max.
R1801K001A	2.716	2.8	2.884	3.500	3.7	3.900
R1801K002A	2.716	2.8	2.884	3.900	4.1	4.300
R1801K003A	3.395	3.5	3.605	3.900	4.1	4.300
R1801K004A	2.716	2.8	2.884	4.300	4.5	4.700
R1801K005A	3.395	3.5	3.605	4.300	4.5	4.700
R1801K006A	2.522	2.6	2.678	2.900	3.1	3.300
R1801K007A	2.716	2.8	2.884	4.700	4.9	5.100
R1801K008A	3.395	3.5	3.605	4.700	4.9	5.100

^{*} Please contact us for setting voltages other than those listed above.

 $^{^{\}ast}$ When use the PG function, put the V_{SET} voltage 2.5 V or higher.


^{*} It is recommended to set as $V_{MP} > V_{SET} + 0.5V$ or higher.

TYPICAL APPLICATION CIRCUIT

R1801K Typical Application Circuit

No. EA-422-200722

Typical Application Circuit

Recommended External Components

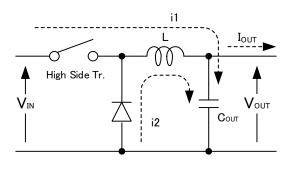
Symbol	Descriptions			
CIN	Ceramic Capacitor 10 µF or higher			
^	Ceramic Capacitor 47 µF or higher			
Соит	Large-capacity Electrical Storage Device			
L	Inductor 22 µH			

Recommended Large-capacity Electrical Storage Devices

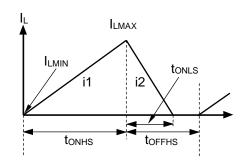
Manufacturer	Product	Part #	Capacity	Туре	Notes
TDK	CeraCharge™	BCT1812M101AG	100 μAh	All-solid-state	CeraCharge™ is a
	J. Company		·	Li-ion	trademark of TDK
Nichicon	SLB series	SLB03070LR35	350 µAh	Li-ion	
NGK	EnerCera®	ET1210C-R ET2016C-R ET271704P-H	5 mAh 25 mAh 5 mAh	Li-ion	EnerCera® is a trademark of NGK
Murata	CT series	CT04120	3 mAh	Li-ion	

TECHNICAL NOTES

The performance of a power source circuit using this device is highly dependent on a peripheral circuit. A peripheral component or the device mounted on PCB should not exceed a rated voltage, a rated current or a rated power. When designing a peripheral circuit, please be fully aware of the following points.


- Using a ceramic capacitor with a lower equivalent series resistance (ESR) is recommended; a capacitor of 10 μF or higher for C_{IN} between VIN and GND pins, a capacitor of 47 μF or higher for C_{OUT}. Using a mass-storage device for C_{OUT} also is recommended. Please choose capacitors depending on the bias characteristics, V_{IN} and V_{OUT}. (Refer to *Recommended External Components*)
- Please choose inductors which have low direct-current resistance, enough allowable current and low magnetic saturation.
- When an intermediate voltage other than VIN or GND is input to the VMP1 to 3 and VSET1 to 3 pins, the supply current may increase due to the cross-conduction current of the IC internal logic circuit. When the VMP1 to 3 and VSET1 to 3 pins are open, the maximum power point control voltage and VSET voltage may vary. When using the IC, connect the VMP1 to 3 and VSET1 to 3 pins to "VIN" or "GND".

THEORY OF OPERATION


BUCK CONVERTER OPERATION AND OUTPUT CURRENT

The basic buck DC / DC converter operation is illustrated in the following figures.

The buck DC / DC converter charges energy in the inductor when the high-side transistor turns ON, and discharges the energy from the inductor when the high-side transistor turns OFF and controls with less energy loss, so that a lower output voltage (V_{OUT}) than the input voltage (V_{IN}) is obtained.

Basic Circuit

Current through Inductor

- **Step1.** The high-side transistor turns on, $I_L = i1$ flows, the inductor is charged with energy, and C_{OUT} is charged to supply the output current (I_{OUT}). At this moment, $I_L = i1$ increases from $I_L = I_{LMIN} = 0$ in proportion to the ON time of the high-side transistor (I_{ONHS}), and reaches the maximum value of the current flowing through the inductor (I_{LMAX}).
- **Step2.** When the high-side transistor turns OFF, the inductor flows current $I_L = i2$ from the diode to maintain $I_L = I_{LMAX}$.
- **Step3.** $I_L = i2$ decreases gradually, after the ON time of the low-side transistor (tonLs), becomes $I_L = I_{LMIN} = 0$.

When the buck operation is stable, the maximum value (I_{LMAX}) and minimum value (I_{LMIN}) of the current through inductor will be the same whether the high-side transistor is ON or OFF, as shown above.

The difference between I_{LMAX} and I_{LMIN} of the current through inductor can be shown by the following equation (1).

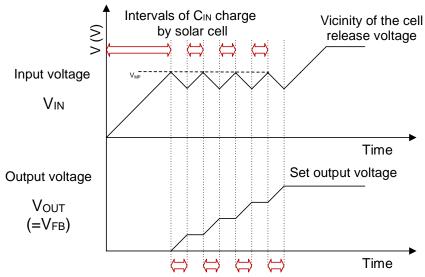
$$\Delta I = I_{LMAX} - I_{LMIN} = V_{OUT} \times t_{ONLS} / L = (V_{IN} - V_{OUT}) \times t_{ONHS} / L - (1)$$

ADJUSTABLE MAXIMUM POWER POINT CONTROL / OUTPUT VOLTAGE

When the pin voltage of VMP1 to 3 and VSET1 to 3 is H, the maximum power voltage and VSET voltage are adjustable externally. 1 corresponds to +100 mV, 2 corresponds to +200 mV and 3 corresponds to -300 mV, and TYP. ± 300 mV is adjustable. However, setting all bits to H is a prohibited.

Due to the circuit configuration, the H/L level threshold voltage of each pin depends on the input voltage. When using H voltage, it is recommended to pull up both of VMPPC / VSET to the input voltage. Use the L voltage shorted to GND.

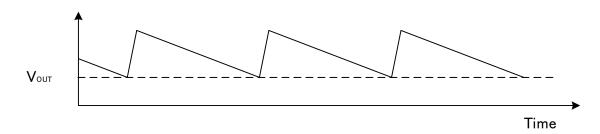
All adjustment pins should not be OPEN, use them as H / L levels.


Regulated Voltage Logic Table of Maximum Power Point Control Voltage

Regulated Voltage	VMP1	VMP2	VMP3
- 300 mV	Н	Н	L
- 200 mV	L	Н	L
- 100 mV	Н	L	L
0 mV	L	L	L
100 mV	L	Н	Н
200 mV	Н	L	Н
300 mV	L	L	Н
Prohibited	Н	Н	Н

Regulated Voltage Logic Table of Output Voltage

Regulated Voltage	VSET1	VSET2	VSET3
- 300 mV	Н	Н	L
- 200 mV	L	Н	L
- 100 mV	Н	L	L
0 mV	L	L	L
100 mV	L	Н	Н
200 mV	Н	L	Н
300 mV	L	L	Н
Prohibited	Н	Н	Н


MAXIMUM POWER POINT CONTROL

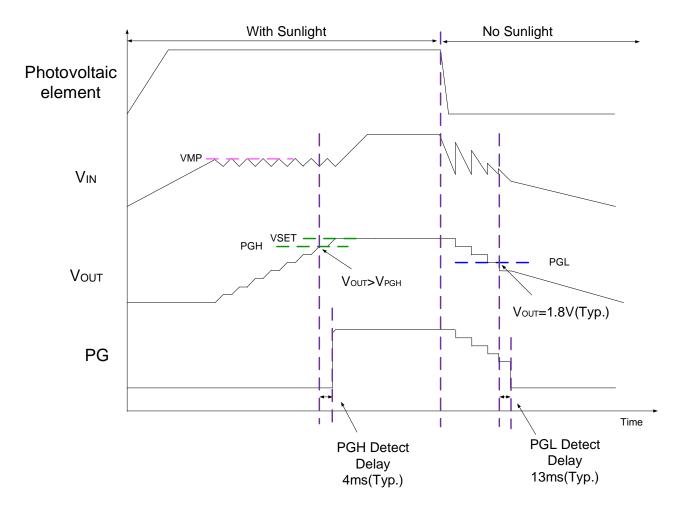
Intervals of the charge transfer to Cout by switching

R1801K transfers power to a secondary side at the maximum power voltage (V_{MP}), which is the operating point of the maximum amount of power generation of a solar cell. After R1801K receives power from the solar cell, the input voltage increases and when it reaches the V_{MP} , a switching starts and the R1801K transfers power to the secondary side. When a power transfer amount exceeds the supplied power from the solar cell, the input voltage decreases by the switching. At a certain point, the switching stops and a state changes to a charging mode. When the input voltage reaches the V_{MP} again, the R1801K transfers power to the secondary side. By repeating this operation enables transferring power to the secondary side while maintaining the operating point of the maximum amount of power generation of the solar cell.

OPERATION IN STABLE STATE

Output Voltage Waveforms Near the Set Voltage

This section explains the R1801K's operation when the output voltage rises to the set voltage When the output voltage exceeds the set voltage, the R1801K stops switching even if the V_{IN} voltage exceeds the V_{MP} voltage. After that, switching resumes when the output voltage decreases below the V_{OUT} voltage due to the load etc. R1801K repeats the above operation to keep the output voltage at the set voltage.

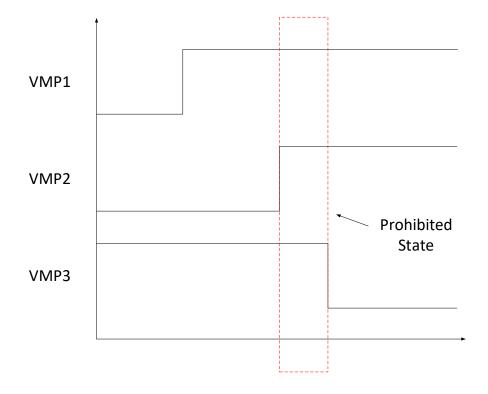

POWER GOOD (PG) FUNCTION

When switching starts and the V_{OUT} voltage exceeds the PGH voltage ($V_{OUT} \times 90\%$), after 4 ms (Typ.), the H signal is output from the PG pin. The output status can be determined by the PG pin voltage, enabling sequence control.

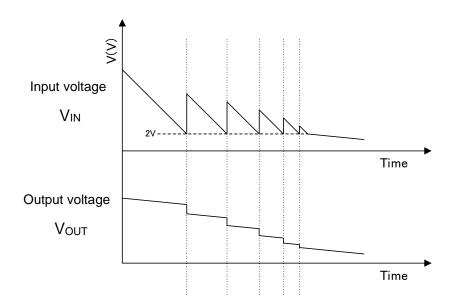
Once the PG pin voltage has risen, the L signal is not output until the V_{OUT} voltage decreases below 1.8 V (Typ.) or lower.

The PG function works regardless whether V_{IN} is supplied or not. For example, when connecting a large-capacity electrical storage device to C_{OUT} in a system with intermittent operation several times a day, the PG function continues to keep the H voltage powering from V_{OUT} even if V_{IN} runs out at night.

When use the PG function, put the V_{SET} voltage 2.5 V or higher.


Sequence of PG function

No. EA-422-200722


SWITCHING SEQUENCE OF VMP/VSET PINS

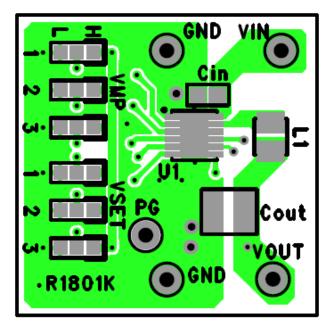
In case that the IC is switching or V_{OUT} is outputting when switching the maximum power point control voltage or the output set voltage, depending on the switching sequence, the output may cause overshooting or undershooting by recognizing a voltage different from the set voltage.

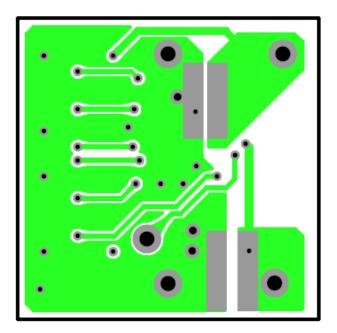
Consider the above mentioned, especially when switching multiple pins of VMP / VSET during operation. Avoid a sequence to be in a prohibited state (all the bit is H) during the switching sequence.

REVERSE CURRENT PROTECTION

R1801K has a reverse current protection to maintain the electric charge which is stored in the large-capacity electrical storage device or C_{OUT} connected to VFB pin when the light is cut off. When the light is cut off after a normal operation and a power supply from the solar cell is discontinued, the charge of supply current of a circuit connected respectively to the input and output sides is drawn.

When the input voltage drops below the output voltage, the reverse current protection operates to prevent the electric charge which is stored in the large-capacity electrical storage device or Cout from backflowing.

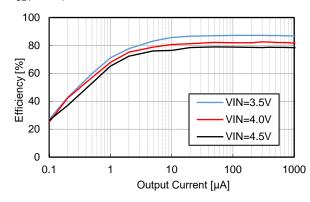

As shown in the figure above, this protection operates at 2 V or higher, when the input voltage drops below 2 V, the charge of the output side flows back to the input side. The drawn charge increases for a moment, but the R1801K returns to the reverse current protection state. The average amount of backflowed electric charge is minute.


Since the reverse current protection has hysteresis, there is a possibility to be detected as the reverse current even when $V_{IN} = V_{OUT}$. It is recommended to set as $V_{MP} > V_{SET} + 0.5 \text{ V}$.

No. EA-422-200722

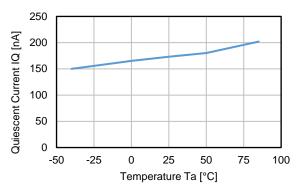
APPLICATION INFORMATION

PCB LAYOUT R1801K

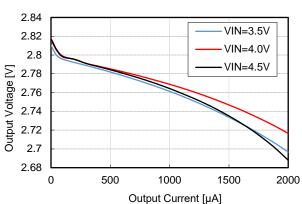

Top Layer Bottom Layer

TYPICAL CHARACTERISTICS

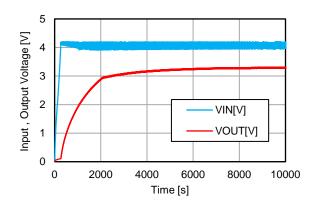
Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.


1) Efficiency vs. Output Current

 $V_{SET} = 2.8 V$


2) Quiescent Current vs. Temperature

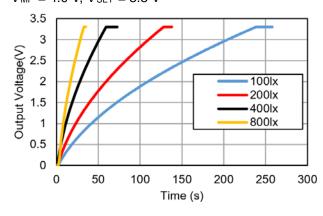
 $V_{IN} = 5.0 \text{ V}, V_{FB} = 3.0 \text{ V}$


3) Output Voltage vs. Output Current

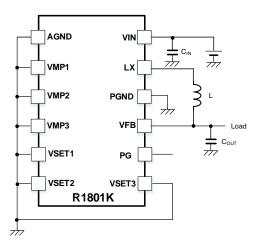
 $V_{SET} = 2.8 V$

4) Minimum Starting Power

 $V_{SET} = 3.3 \text{ V}, I_{IN} = 222 \text{ nA}$

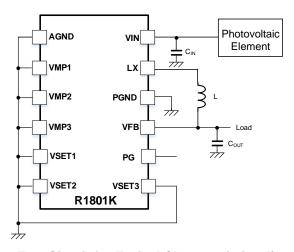


5) Start with Power Generation Element


Using R1801K003A,

Power Generation Element= AM-1801

 $V_{MP} = 4.0 \text{ V}, V_{SET} = 3.3 \text{ V}$


Test Circuit and Components for Measurement

Test Circuit for Typical Characteristics 1) to 4)

Measurement Components for Typical Characteristics

Symbol	Specification	Manufacturer	Parts number
CIN	10µF	TDK	C1608X5R1E106M
Соит	47µF	TDK	C3216X6S1A476M160AC
L	22µH	TDK	VLS201612CX-220M

Test Circuit for Typical Characteristics 5)
(When connecting to photovoltaic element, large-capacity capacitor)

Measurement Components for Typical Characteristics

Symbol	Specification	Manufacturer	Parts number
Photovoltaic	Open Circuit Voltage 5.0V	Panasonic	AM-1801
Element	(at White Fluorescent Lighting 200lx)		
CIN	10μF	TDK	C1608X5R1E106M
Соит *1	1mF	Rubycon	10ZLH1000MEFC8X16
L	22µH	TDK	VLS201612CX-220M

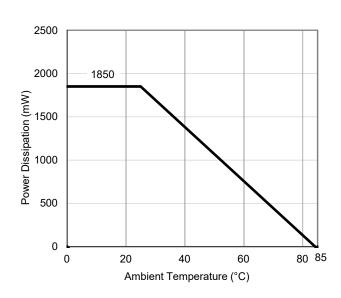
^{*1} Used as an alternative of a large-capacity electrical storage device.

PD-DFN(PLP)2730-12-(8585)-JE-B

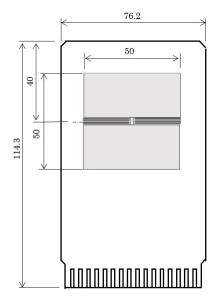
The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

Measurement Conditions

Item	Measurement Conditions		
Environment	Mounting on Board (Wind Velocity = 0 m/s)		
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)		
Board Dimensions	76.2 mm × 114.3 mm × 0.8 mm		
Copper Ratio	Outer Layer (First Layer): Less than 95% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square		
Through-holes	φ 0.3 mm × 23 pcs		

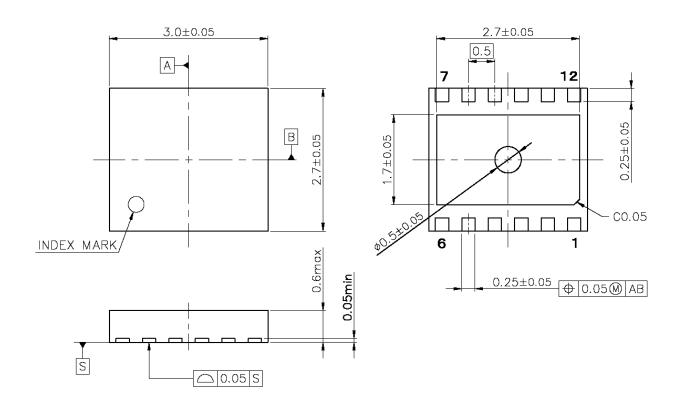

Measurement Result

 $(Ta = 25^{\circ}C, Tjmax = 85^{\circ}C)$


Item	Measurement Result
Power Dissipation	1850 mW
Thermal Resistance (θja)	θja = 32°C/W
Thermal Characterization Parameter (ψjt)	ψjt = 8°C/W

 θ ja: Junction-to-Ambient Thermal Resistance

ψjt: Junction-to-Top Thermal Characterization Parameter



Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

DM-DFN(PNP)2730-12-JE-B

DFN(PLP)2730-12 Package Dimensions (Unit: mm)

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI.
- 11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment.

Halogen Free

Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

RICOH RICOH ELECTRONIC DEVICES CO., LTD.

Official website

https://www.n-redc.co.jp/en/

Contact us

https://www.n-redc.co.jp/en/buy/